



ORNL is managed by UT-Battelle, LLC for the US Department of Energy



### **EPICS Network Protocols**

**Channel Access** 

- Since beginning of EPICS
- DBR\_\*: Numbers, enums, string, scalar and array, with time, alarm, limits
- Still fully supported

**PV** Access

- Started as "EPICS V4" development
- PV Data: Arbitrary structures
- Since EPICS 7 (Dec. 2017) included in EPICS base

### First Glance

softlocPVA instead of softloc

# We did this before: cd /ics/examples/02\_fishtank cat st.cmd

```
# Compare, then run:
cd /ics/examples/24_pvaccess
cat st.cmd
./st.cmd
```

• pv... instead of ca...

camonitor training:setpoint training:tank
pvmonitor training:setpoint training:tank
pvput training:setpoint 40
caput training:setpoint 30

• CS-Studio:

css -resource /ics/examples/24\_pvaccess/pva.bob



### **PV** Access

#### Similar to Channel Access

- Name search via UDP
- Connection for data transfer via TCP
- EPICS\_PVA\_ADDR\_LIST, EPICS\_PVA\_AUTO\_ADDR\_LIST

#### Get, put, monitor

– Plus an 'RPC' type operation

#### Arbitrary PV Data structures instead of DBR\_.. types



### Custom Data: Great, but then what?

| Fred's | structure: |
|--------|------------|
| double | value      |
| short  | status     |
| short  | severity   |
| string | units      |
| time   | timeStamp  |
| •••    |            |

| Keith's | structure: |
|---------|------------|
| short   | level      |
| double  | data       |
| string  | type       |
| time    | stamp      |
| •••     |            |

| Jürgen's | structure: |
|----------|------------|
| short    | grad       |
| double   | wert       |
| string   | typ        |
| long     | zeit       |
| •••      |            |

| Jane's | structure: |
|--------|------------|
| short  | info       |
| double | content    |
| string | meta       |
| long   | ms         |
| •••    |            |
|        |            |

- Which number to show on a user display?
- What units?
- Is this an alarm?
- Time stamp?

- "Normative Types"
- Channel Access

struct dbr\_ctrl\_double: short status short severity short precision char units[8] ... no timestamp ... double value

```
struct dbr_time_double:
short status
short severity
timestamp stamp
double value
```

Actional Laboratory

You get what you request (network always transfers complete struct) You get what you request (but network only transfers changes)

#### • PV Access

epics:nt/NTScalar: double value short status short severity string units time timeStamp

•••

### Channel Access

#### VS.

**PV** Access

#### Similar command line tools:

caget training:tank

camonitor training:tank

cainfo training:tank

pvget training:tank

pvmonitor training:tank

pvinfo training:tank

caget -d CTRL\_DOUBLE training:tank

# Not supported
camonitor -d CTRL\_DOUBLE training:tank

caget training:tank.SCAN

pvget —M raw training:tank

# Note first few updates!
pvmonitor -M raw training:tank

pvget training:tank.SCAN



## CS-Studio

• Use pva://... prefix to select PV Access



- Use ca://... prefix to select Channel Access
- Set default in /ics/tools/phoebus/settings.ini

# Default PV type: ca or pva?
org.phoebus.pv/default=pva



So it's very similar, maybe more efficient...

#### What's really new?

#### How about those custom structures?



9

## Images: Normative type NTNDArray

• See Area Detector (NDPluginPVA) or

cd /ics/examples/24\_pv\_access
./start\_imagedemo

CS-Studio: Image widget

 Only needs pva://ImagePV

Actional Laboratory

10



### Custom PV Data

SNS Beam Lines started to use this in ~2014

cd /ics/examples/24\_pvaccess ./start neutrondemo

pvinfo neutrons pvmonitor neutrons

Allows fetching just what's needed:

```
# For detector pixel display
pvget -r 'field(pixel)' neutrons
pvmonitor -r 'field(timeStamp, pixel)' neutrons
```

```
# For energy displays
pvmonitor -r 'field(time_of_flight, pixel)' neutrons
```

# Custom PV Data in CS-Studio

<u>Cannot</u> handle arbitrary structure pva://neutrons

<u>Can</u> handle fields which are scalar or array pva://neutrons/proton\_charge

pva://neutrons/pixel



12

### PV Access and Python

- Basic 'get', 'put', 'monitor'
- PV Access server for normative types or custom data
  - See \*.py examples under
     cd /ics/examples/24\_pvaccess



### Custom PV Data from IOC Records

`makeBaseApp.pl -t example` includes "group", See /ics/examples/10\_customApp/Db/circle.db, /ics/examples/iocBoot/ioc\_custom

Calc records ..: circle:x & ..: circle:y compute (x, y) coordinate on circle

info() annotations create PV "training:circle" PV as struct { angle, x, y }

#### PVA "training:circle" updates atomically

camonitor training:circle:x training:circle:y PCEVES SEPARATE X, Y UPdateSpvmonitor training:circle Will AlWAYS SEE sqrt(x<sup>2</sup>+y<sup>2</sup>)==1



cd /ics/examples/24\_pvaccess
python circle.py

# State of PV Access by end of 2021

Done, operational

- Server and client libraries for C++, Java, Python
  - 2<sup>nd</sup> version
- Area Detector image transfer
  - Used to distribute processing from camera hosts
- Custom data servers
   and clients
  - SNS: neutron data

- APS: services

Done, to be tested

- PV server for records in IOC
  - All record types
  - Full 'units'
  - Support changing metadata
- CS-Studio client
- Gateway

#### To do

- IOC links
  - "CP" links  $\rightarrow$  PVA links
  - Channel Access
     Get/put callback → ??
- How to best combine data from records into custom PVA data?

### Summary: PV Access is ..

- Update to Channel Access
  - Both can be used in parallel
- Similar, but supports custom data types
  - Won't replace IOC, but useful for special cases

- Since EPICS 7 included in base IOC
  - Details of 'group', 'field(...)' access still evolving

